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Machine Learning and Neural Network Models  

The advent of machine learning (ML) or neural net (NN) technology offers the 

possibility of a new class of models that potentially afford both high reliability and 

quality as well as low (computational) cost. Implemented in the initial release of 

Spartan’24, are a series of 5 neural nets designed to (i) improve conformer energy 

differences provided by MMFF molecular mechanics, (ii) accurately estimate 

ωB97X-D/6-31G* equilibrium geometries starting from MMFF geometries, and (iii) 

accurately estimate total energies from: 

 

ωB97X-V/6-311+G(2df,2p)//ωB97X-D/6-31G* 

ωB97M-V/6-311+G(2df,2p)//ωB97X-D/6-31G* 

ωB97M(2)/6-311+G(2df,2p)//ωB97X-D/6-31G*  

 

models starting from ωB97X-D/6-31G* equilibrium geometries and energies or 

estimated ωB97X-D/6-31G* equilibrium geometries and ωB97X-D/6-31G* 

energies. There are five neural nets in total, all of which are supported for closed 

shell uncharged molecules comprising the elements: H, C, N, O, F, S, Cl and Br 

(only). 

 

SpookyNet* has been used to generate all five neural nets. Data sets comprise ≈150k  

molecules with ≈1.8 million conformers obtained from ωB97X-V/6-

311+G(2df,2p)[6-311G*]//MMFF calculations for the MMFF correction neural net, 

≈120,000 molecules each with both equilibrium and 50 distorted geometries (times 

≈6.1 million structures) obtained from ωB97X-D/6-31G* calculations for the 

estimated ωB97X-D/6-31G* geometry neural net, ≈295,000 molecules obtained 

from ωB97X-V/6-311+G(2df,2p)//ωB97X-D/6-31G* calculations for the estimated 

ωB97X-V/6-311+G(2df,2p) energy neural net, ≈289,000 molecules obtained from 

ωB97M-V/6-311+G(2df,2p)//ωB97X-D/6-31G* calculations for the estimated 

ωB97M-V/6-311+G(2df,2p) energy neural net, and the same ≈289,000 molecules 

obtained from ωB97M(2)/6-311+G(2df,2p)//ωB97X-D/6-31G* calculations for the 

estimated ωB97M(2)/6-311+G(2df,2p) energy neural net. 

 

*Nat. Commun. 12(1), 2021, 1-14. (https://github.com/OUnke/SpookyNet). 

 

https://github.com/OUnke/SpookyNet
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Improving MMFF Molecular Mechanics 

Molecular mechanics is perhaps the only class or methods that is routinely practical 

for calculations of conformer energy differences for flexible molecules with several 

degrees of conformational freedom. All accessible conformers, or at the very least a 

representative sample of these conformers, need to be identified and ranked based 

on energy. Assuming three-fold rotors, two and three degrees of freedom lead to 

only 9 and 27 conformers, respectively, whereas a molecule with 9 degrees of 

freedom (not at all unusual in natural products) leads to nearly 20,000 conformers. 

While only a relatively few conformers are likely to seriously affect calculated 

molecular properties, all must be examined to determine which few.  

The MMFF94 approach has been shown to closely reproduce experimental 

conformational energy differences for small molecules with a single degree of 

conformational freedom. However, as suggested from the plot below, for a diverse 

series moderate size organic molecules with multiple degrees of conformational 

freedom, MMFF is not satisfactory. As experimental data are completely lacking, 

the reference energy is ωB97X-V/6-311+G(2df,2p)[6-311G*] density functional 

energy using MMFF equilibrium geometries, the same quantum chemical model 

used to train the neural net. 

 

Comparison of Conformational Energy Differences Obtained from 
MMFF and ωB97X-V/6-311+G(2df,2p)[6-311G*] Calculations 
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MMFF structures corrected by neural net energies provides a far better accounting 

with only a modest (factor of two) increase in computer time.  The overall RMS 

error reduces from 10.2 kJ/mol for MMFF to 1.8 kJ/mol with the neural net 

correction. 

 

Comparison of Conformational Energy Differences Obtained from  
Neural Net and ωB97X-V/6-311+G(2df,2p)[6-311G*] Calculations 

 

Estimating ωB97X-D/6-31G* Equilibrium Geometries 

Two considerations generally dictate model selection, quality of the results and 

computation time. It is generally accepted that density functional models provide 

more consistent and better results than Hartree-Fock molecular orbital models but 

are also more time consuming, sometimes significantly so. The ωB97X-D/6-31G* 

density functional model is among the most commonly-used quantum chemical 

models for geometry calculation. It is both accurate and reliable, properly accounting 

for the geometries of molecules that are often poorly dealt with using Hartree-Fock 

models. While it is generally not sufficiently accurate for use in determining reaction 

energies, or energy differences among conformers, ωB97X-D/6-31G* structures 

provide a good foundation for energy calculations with more rigorous functionals 

and larger (more complete) basis sets. 

The neural net fit to ωB97X-D/6-31G* incorporated into Spartan’24 is many orders 

of magnitude faster than the underlying density functional model. Structures that 
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previously required hours of computer time may now be closely approximated in 

seconds (at most a few minutes). It must be emphasized each one of these neural 

network calculations is unique and specific to the underlying computational model 

it is trained to reproduce (a particular property (or properties) from a specific 

functional and with a specific basis set. A neural net constructed to reproduce 

equilibrium geometries from the popular B3LYP-D3/6-31G* model will be distinct 

from that directed at ωB97X-D/6-31G*. Also acknowledged: different training sets 

and different convergence criteria (as well as different starting geometries) will 

ultimately lead to different neural network definitions. The hope is that subtle 

differences in training sets will lead to nearly the same final (or very similar) 

equilibrium geometries. 

We’ve applied three criteria to assess how well the geometry neural network  

performs, using a test set comprising 430 natural products with molecular weights 

ranging from ≈ 200 to 700 amu (mean of 447 amu), none of which were used in 

neural net training or validation.  

The most obvious criterion is structure (itself): bond lengths, bond angles,  and 

dihedral angles [excluding those involving hydrogen(s)]. The performance was 

substantive, with only 14 molecules showing bond lengths that deviate from ωB97X-

D/6-31G* values by more than 0.02 Ǻ. Similar results were observed in bond angles; 

only 4 and 7 molecules incorporate a bond angle that differs by more than 10o and 

5o, respectively. Less than a quarter of the molecules show individual bond-angle 

deviations of more than 2o.  

Dihedral angles are perhaps the most important structural parameter in that large 

deviations may result in molecular shapes that differ greatly from those obtained 

using ωB97X-D/6-31G* (the training model). One concern is that further calculation 

of NMR chemical shifts, which are sensitive to medium to long-range interactions, 

will be impacted. Only two molecules show very large (>50o) deviations; 34 (8%) 

show deviations >20; 30% of molecules show deviations of >10o. 

The second criterion involves differences in energies resulting from use of neural 

net equilibrium geometries in lieu of ωB97X-D/6-31G* geometries. The RMS error 

for the neural net is 8 kJ/mol and the energies of only 11 molecules deviate from 

ωB97X-D/6-31G* by more than 20 kJ/mol, the largest of which is 42 kJ/mol. 54 

molecules deviate by more than 10 kJ/mol. 

Perhaps the most important metric is the effect of equilibrium geometry on proton 

and especially 13C NMR chemical shifts. This is because geometry calculation is key 
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in any effort to realize an accurate rapid procedure to calculate chemical shifts of 

conformationally flexible organic molecules, natural products among them, and to 

distinguish among stereoisomers that closely reproduces the results of the accurate 

(but time consuming) multi-step protocols now in place*.  

Only 4 and 29 molecules exhibit individual deviations greater than 1 and 0.5 ppm, 

respectively, more than a third of the molecules have one or more protons with 

chemical shifts that deviate from ωB97X-D/6-31G* values by more than 0.2 ppm. 

Statistics for 13C chemical shifts mimic those for proton shifts. Only one molecule 

exhibits an individual deviation >10 ppm and only 11 exhibit individual deviations 

>5 ppm. Roughly a third of the molecules based on neural net geometries show at 

least one individual deviation >2 ppm. The overall RMS (all carbons) and the RMS 

of the maximum individual 13C shift errors (per molecule) from the neural net 

geometries are 0.8 ppm and 2.3 ppm, respectively. 

 

Improved Reaction and Conformer Energy Calculations  

Reaction energies and conformer energies differences are among the most important 

quantities obtained from quantum chemical calculations. Organic chemists, natural 

products chemists in particular, will benefit from calculations able to identify the 

dominant stereoisomer arising from a chemical reaction, and from determination of 

conformer energy differences, providing Boltzmann weights and with these, 

accurate prediction of NMR shifts of flexible molecules.  

The ”gold standard” CCSD(T)/CBS calculations scale formally as the seventh power 

of the number of basis functions, and can take many hours (even days) to complete. 

Reducing computational cost while achieving CCSD(T) accuracy has been the 

primary motivation for development of many density functional models. In previous 

versions of Spartan, the primary focus has been on the Head-Gordon functionals: 

ωB97X-V, ωB97M-V and ωB97M(2), all with the 6-311+G(2df,2p) basis set and all 

starting from ωB97X-D/6-31G* geometries. The CCSD(T) procedure is superior to 

these three functionals, and while the 6-311+G(2df,2p) basis set is moderately large 

and diverse, the recipe developed to yield a “complete basis set” (CBS) ensures that 

further additions will at most have modest effect on the energy. Finally, the geometry 

is different from that used in CCSD(T) calculations (MP2/aug-cc-pVDZ basis set 

vs. ωB97X-D/6-31G*).  

*J. Nat. Prod. 2019, 82 8, 2299-2306. (https://pubs.acs.org/doi/10.1021/acs.jnatprod.9b00603) 

https://pubs.acs.org/doi/10.1021/acs.jnatprod.9b00603
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The two models ωB97X-V/6-311+G(2df,2p)//ωB97X-D/6-31G* and (to a lesser 

extent) ωB97M-V/6-311+G(2df,2p)//ωB97X-D/6-31G* are practical for routine 

calculations on rigid molecules (or those with only a few degrees of conformational 

freedom) up to molecular weights <400 amu, although they may require tens of 

minutes to several hours to complete. They are clearly impractical, at least routinely 

so, for significantly larger systems, or for molecules with multiple degrees of 

conformational freedom. The ωB97M(2)/6-311+G(2df,2p)//ωB97X-D/6-31G* is 

more computationally costly and practical ranges are even smaller. 

Spartan’24 provides neural networks trained to these three density functional 

models. These require an ωB97X-D/6-31G* geometry (or an estimated geometry 

from the Est. ωB97X-D/6-31G* neural network along with a single point ωB97X-

D/6-31G* energy). Because of these requirements, application of these neural nets 

is not “instantaneous” (unlike the two previous described machine learning models, 

these three are not devoid of quantum chemical calculations as input). This said, the 

overall performance is easily an order of magnitude faster utilizing these neural nets 

to provide energies (compared to the pure quantum chemical calculations). As 

quality conformer energy differences are needed to establish accurate Conformer 

Distributions (as well as Boltzmann weighted NMR shifts), these energy-focused 

neural networks provide significant computational savings in tasks including 

conformational searching, in particular the multi-step NMR Spectrum task.  

 

 

 


