
 

 

 

Machine Learning and Neural Network Models  

The advent of machine learning (ML) or neural network (NN) approaches offers the 

possibility of a new class of computational models that afford both high reliability 

and quality as well as low (computational) cost. A series of seven neural network 

models is currently implemented in Spartan’24. These models were developed for 

specific (fundamental) computational tasks, to: (i) improve conformer energy 

differences provided by MMFF94[1-4] molecular mechanics, (ii) accurately estimate 

ωB97X-D/6-31G*[5-7] equilibrium geometries starting from MMFF geometries, (iii) 

accurately estimate total energies from: 
 

ωB97X-V8/6-311+G(2df,2p)11,12//ωB97X-D/6-31G* 

ωB97M-V9/6-311+G(2df,2p) 11,12//ωB97X-D/6-31G* 

ωB97M(2)10/6-311+G(2df,2p) 11,12//ωB97X-D/6-31G*  
 

models starting from either ωB97X-D/6-31G* equilibrium geometries and energies 

or from estimated ωB97X-D/6-31G* equilibrium geometries (neural network 

model) and ωB97X-D/6-31G* (single point) energies, and (iv) provide fast and 

accurate 1H and 13C chemical shifts, trained to reproduce results from the empirically 

corrected13 ωB97X-D/6-31G* model. All machine learning models are supported 

for closed shell uncharged molecules comprising the elements: H, C, N, O, F, S, Cl 

and Br (only)†. Continued neural network development is underway; additional 

models will almost certainly find their way into future Spartan releases. 

With some customizations, the published SpookyNet14 learning forcefield approach 

has been used to generate each neural network model. A training set of more than 

140k molecules with more than 1.8 million total conformers obtained from  

ωB97X-V/6-311+G(2df,2p)[6-311G*]//MMFF calculations for the Corrected 

MMFF neural net, ≈120,000 molecules each with both equilibrium geometries and 

50 distorted geometries (>6 million structures) obtained from ωB97X-D/6-31G* 

calculations for the Est. Density Functional ωB97X-D/6-31G* geometry neural 

net, ≈295,000 molecules from ωB97X-V/6-311+G(2df,2p)//ωB97X-D/6-31G* 

calculations for the Est. ωB97X-V/6-311+G(2df,2p) energy neural net, ≈289,000 

molecules from ωB97M-V/6-311+G(2df,2p)//ωB97X-D/6-31G* calculations for 

the Est. ωB97M-V/6-311+G(2df,2p) energy neural net, and ≈289,000 molecules 

from ωB97M(2)/6-311+G(2df,2p)//ωB97X-D/6-31G* calculations for the Est. 

https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6%3C490::AID-JCC1%3E3.0.CO;2-P
https://pubs.rsc.org/en/content/articlelanding/2008/cp/b810189b
https://www.wiley.com/en-us/AB+INITIO+Molecular+Orbital+Theory-p-9780471812418
https://doi.org/10.1063/1.456153
https://doi.org/10.1039/C3CP54374A
https://doi.org/10.1063/1.438955
https://doi.org/10.1002/jcc.540040303
https://doi.org/10.1063/1.4952647
https://doi.org/10.1063/1.438955
https://doi.org/10.1002/jcc.540040303
https://doi.org/10.1063/1.5025226
https://doi.org/10.1063/1.438955
https://doi.org/10.1002/jcc.540040303
https://doi.org/10.1021/acs.jnatprod.9b00603
https://www.nature.com/articles/s41467-021-27504-0


 

 

† NMR shift networks available for proton and 13C only (at present). 

ωB97M(2)/6-311+G(2df,2p) energy neural net. The NMR neural network training 

sets include ≈2.2 million molecules with more than 44 million calculated  1H and 33 

million calculated 13C chemical shifts from ωB97X-D/6-31G*. 

 

Improving MMFF94 Molecular Mechanics (Corrected MMFF)15 

Molecular mechanics is perhaps the only class of methods that is routinely practical 

for calculations of conformer energy differences for flexible molecules with several 

degrees of conformational freedom. All accessible conformers (or at the very least a 

representative sample of these conformers) need to be identified and ranked based 

on energy. Assuming three-fold rotors, two and three degrees of freedom lead to 

only 9 and 27 conformers, respectively, whereas a molecule with 9 degrees of 

freedom (not at all unusual in natural products) leads to nearly 20,000 conformers. 

While only a relatively few conformers are likely to seriously contribute to 

calculated molecular properties, all must be examined to determine which few.  

The MMFF94 approach has been shown to closely reproduce experimental 

conformational energy differences for small molecules with a single degree of 

conformational freedom. However, as suggested from the plot below, for a diverse 

series of moderately sized organic molecules with multiple degrees of 

conformational freedom, MMFF is not satisfactory. As experimental data are 

completely lacking, the reference energy is ωB97X-V/6-311+G(2df,2p)[6-311G*] 

density functional energy using MMFF equilibrium geometries, the same quantum 

chemical model used to train the neural net. 

MMFF structures corrected by neural net energies provide a far better accounting 

with only a modest (factor of two) increase in computer time.  The overall RMS error 

reduces from 10.2 kJ/mol for MMFF to 1.8 kJ/mol with the neural net correction. 

In conformer searching, Spartan’s MMFF implementation is quite fast (typically no 

more than a second per conformer, and most of that is CPU overhead, not actual 

computational time). Adding a second or less (per conformer), to substantively 

improve the quality of conformational energy differences is time well spent, as it 

requires far fewer conformers calculated with more accurate (and time consuming) 

quantum chemical computational approaches to establish an accurate Boltzmann 

distribution. 

https://doi.org/10.1002/jcc.70016


 

 

Comparison of Conformational Energy Differences Obtained from 
MMFF and ωB97X-V/6-311+G(2df,2p)[6-311G*] Calculations 

 
 

 

Comparison of Conformational Energy Differences Obtained from  
Neural Net and ωB97X-V/6-311+G(2df,2p)[6-311G*] Calculations 

 

 

Estimating ωB97X-D/6-31G* Equilibrium Geometries16 

Two considerations generally dictate model selection, quality of results and 

computation time. It is generally accepted that density functional models provide 

more consistent and more accurate results than Hartree-Fock molecular orbital 

models, but are also more time consuming, sometimes significantly so. The ωB97X-
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D/6-31G* density functional model is among the most used quantum chemical 

models for geometry calculation. It is both accurate and reliable, properly accounting 

for the geometries of molecules that are often poorly dealt with using Hartree-Fock 

models. Additionally, it has been recognized as a standout for NMR shift prediction 

among several dozen functionals surveyed17. While it is generally not sufficiently 

accurate for use in determining reaction energies, or energy differences among 

conformers, structures from ωB97X-D/6-31G* provide a good foundation for 

energy calculations with more rigorous functionals and larger (more complete) basis 

sets. 

The neural net fit to ωB97X-D/6-31G* incorporated into Spartan’24 is orders of 

magnitude faster than the underlying density functional model. Structures that 

previously required hours of computer time may now be closely approximated in 

seconds (at most a few minutes). It should be emphasized that each one of these 

neural network calculations is unique and specific to the underlying computational 

model (and particular property, or properties) it is trained to reproduce, from a 

specific functional, and with a specific basis set. A neural net constructed to 

reproduce equilibrium geometries from the popular B3LYP-D3/6-31G* model (for 

example) will be distinct from that directed at ωB97X-D/6-31G* structures. Also 

acknowledged: different training sets and different convergence criteria (as well as 

different starting geometries) will ultimately lead to different neural network 

definitions. The hope is that subtle differences in training sets will lead to nearly the 

same final (or very similar) equilibrium geometries. 

To assess how well the geometry neural network performs, a test set comprising 430 

natural products with molecular weights ranging from ≈ 200 to 700 amu (with a 

mean of 447 amu) was established. None of molecules in the test set were used in 

training or validation. We chose three criteria for assessment: structure, energy, and 

NMR chemical shifts.  

The most obvious criterion is structure (itself): bond lengths, bond angles, and 

dihedral angles [excluding those involving hydrogen(s)]. The performance was 

substantive, with only 14 molecules showing bond lengths that deviate from ωB97X-

D/6-31G* values by more than 0.02 Ǻ. Similar results were observed in bond angles; 

only 4 and 7 molecules incorporate a bond angle that differs by more than 10o and 

5o, respectively. Less than a quarter of the molecules show individual bond-angle 

deviations of more than 2o.  
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Dihedral angles are perhaps the most important structural parameter in that large 

deviations may result in molecular shapes that differ greatly from those obtained 

using ωB97X-D/6-31G* (the training model). Of additional concern is that further 

calculation of NMR chemical shifts, which are sensitive to medium to long-range 

interactions, might be impacted. Only two molecules show very large (>50o) 

deviations; 34 (8%) show deviations >20; 30% of molecules show deviations of 

>10o. 

The second criterion involves differences in energies resulting from use of neural 

net equilibrium geometries in lieu of ωB97X-D/6-31G* geometries. The RMS error 

for the neural net is 8 kJ/mol and the energies of only 11 molecules deviate from 

ωB97X-D/6-31G* by more than 20 kJ/mol, the largest of which is 42 kJ/mol. Fifty-

four (54) molecules deviate by more than 10 kJ/mol. 

Perhaps the most important metric is the effect of equilibrium geometry on 1H and 

especially 13C NMR chemical shifts. This is because geometry calculation is key in 

any effort to realize an accurate rapid procedure to calculate chemical shifts of 

conformationally flexible organic molecules, natural products among them, and to 

distinguish among stereoisomers that closely reproduce the results of the accurate 

(but time consuming) QM-based multi-step protocols available since Spartan’18. 

Only 4 and 29 molecules exhibit individual proton shift deviations greater than 1 and 

0.5 ppm, respectively, more than a third of the molecules have one or more protons 

with chemical shifts that deviate from ωB97X-D/6-31G* values by more than 0.2 

ppm. 

Statistics for 13C chemical shifts mimic those for proton shifts. Only one molecule 

exhibits an individual deviation >10 ppm and only 11 exhibit individual deviations 

>5 ppm. Roughly a third of the molecules based on neural net geometries show at 

least one individual deviation >2 ppm. The overall RMS (all carbons) and the RMS 

of the maximum individual 13C shift errors (per molecule) from the neural net 

geometries are 0.8 ppm and 2.3 ppm, respectively. 

 

Improved Reaction and Conformer Energy Calculations  

Reaction energies and conformer energies differences are among the most important 

quantities obtained from quantum chemical calculations. Organic chemists 

(synthetic and natural products chemists in particular) will benefit from calculations 

able to identify the dominant stereoisomer arising from a chemical reaction, and 



 

from determination of conformer energy differences, providing Boltzmann weights 

and with these, accurate prediction of NMR shifts of flexible molecules.  

The “gold standard” CCSD(T)/CBS calculations18 scale formally as the seventh 

power of the number of basis functions, and can take many hours (even days) to 

complete. Reducing computational cost while achieving CCSD(T) accuracy has 

been the primary motivation for development of many density functional models. In 

previous versions of Spartan, the primary focus has been on the Head-Gordon 

functionals: ωB97X-V, ωB97M-V and ωB97M(2), all with the 6-311+G(2df,2p) 

basis set and all starting from ωB97X-D/6-31G* geometries. The CCSD(T)19 

procedure is superior to these three functionals, and while the 6-311+G(2df,2p) basis 

set is moderately large and diverse, the recipe developed to yield a “complete basis 

set” (CBS) ensures that further additions will at most have modest impact on the 

energy. Finally, in our case, the geometry is different from that used in CCSD(T) 

calculations (MP2/aug-cc-pVDZ basis set vs. ωB97X-D/6-31G*).  

The two models ωB97X-V/6-311+G(2df,2p)//ωB97X-D/6-31G* and (to a lesser 

extent) ωB97M-V/6-311+G(2df,2p)//ωB97X-D/6-31G* are practical for routine 

calculations on rigid molecules (or those with only a few degrees of conformational 

freedom) up to molecular weights <400 amu, although they may require tens of 

minutes to several hours to complete. They are clearly impractical, at least routinely 

so, for significantly larger systems, or for molecules with multiple degrees of 

conformational freedom. The ωB97M(2)/6-311+G(2df,2p)//ωB97X-D/6-31G* is 

more computationally costly and practical ranges are even smaller. 

Spartan’24 provides neural networks providing Est. DFT energies20 trained to these 

three density functional models. These require an ωB97X-D/6-31G* geometry (or 

an estimated geometry from the Est. ωB97X-D/6-31G* neural network along with a 

single point ωB97X-D/6-31G* energy). Because of these requirements, application 

of these neural nets is not “instantaneous” (unlike the two previous described 

machine learning models, these three are not devoid of quantum chemical 

calculations as input). This said, the overall performance is easily an order of 

magnitude faster utilizing these neural networks to provide energies (compared to 

the corresponding quantum chemical energy calculations). As quality conformer 

energy differences are needed to establish accurate Conformer Distributions (as 

well as Boltzmann weighted NMR shifts), these energy-focused neural networks 

provide significant computational savings in tasks featuring conformational 

searching, offering the hope of an analogous machine learning option to the QM-

heavy multi-step NMR Spectrum task (the protocol established for determining 
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accurate 13C and 1H Chemical Shifts for conformationally flexible molecules)11. 

Although the routine desire for quality energies (alone) suggests that the three Est. 

Density Functional energy models will have ample opportunity for application in 

conjunction with standard equilibrium geometry calculations. 

 

Estimating accurate Proton and 13C NMR Chemical Shifts 

The challenging task of assigning molecular structure for novel synthetic and/or 

novel natural product molecules has, in recent years, been supported by density 

functional calculations (typically GIAO-based). Calculations have become a useful 

tool to aid or challenge structural assignments[21-33]. Spartan’s multi-step protocol is 

often successfully applied in support of confirming structural assignment[34-39]. The 

major limiting factor to more routine application of the multi-step protocol remains 

the unfortunately long calculation times (many hours to days). While the original 

Spartan’20 protocol remains an option, beginning in Spartan’24, we have 

introduced (by default) the Corrected MMFF model as an additional filter between 

MMFF94 optimized structures and further DFT optimization and energy calculation. 

This step adds only a small fraction of overall computational time, and allows a 

reduction of the energy window (above “best” conformation) from 40 kJ/mol to 20 

kJ/mol, as well as a reduction in the maximum total number of conformers passed 

on to further quantum chemical calculations (from 200 to 100). This allows for a 

factor of 2 to 5 faster results (compared to the Spartan’20 protocol). While an 

improvement, the QM-heavy protocol often remains time consuming, a recent 

sample of conformationally flexible (mean of ≈ 280,000 conformers) natural 

products molecules (with a mean molecular weight of 447.8 amu) required an 

average of  319 minutes computational time (per isomer) to provide  Boltzmann 

weighted Chemical Shifts (per isomer), sufficient to compare with experimental 

shifts and assign structure. 

 

To be routinely applicable, improved computational time is highly desired. Two 

independently trained neural network models providing 1H and 13C chemical shifts 

(only), have been implemented beginning with Spartan’24 1.3.0. Trained on > 2.7 

million equilibrium geometry calculations (over 44 million 1H and 33 million 13C 

chemical shifts) from ωB97X-D/6-31G* density functional and the Est. ωB97X-

D/6-31G* machine learning model (trained to reproduce the former). These NMR 

chemical shift machine learning models perform consistently well when applied to 

organic systems outside of the formidable training set. An assessment of 601 
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molecules from the Marine Natural Product Database40, ranging in weight from 111 

to 693 amu (with an average weight of 290 amu) has been made. Results from the 
1H and 13C chemical shift neural networks from two equilibrium geometry input 

sources (ωB97X-D/6-31G* density functional the est. ωB97X-D/6-31G* machine 

learning model) were compared with chemical shift results from direct calculation 

with quantum chemical (empirically corrected) GIAO density functional ωB97X-

D/6-31G* calculations. The NMR neural net models performed equally well when 

using structures (equilibrium geometries) from ωB97X-D/6-31G* density functional 

and the Est. ωB97X-D/6-31G* machine learning model, with RMS errors for 

chemical shifts of .05 ppm for 1H and .73 ppm13C from QM geometries and .09 ppm 

and 1.02 ppm from machine learning geometries.  Summarized in Table 1: 

 

Table 1. RMS and Max. Absolute Errors for 1H and 13C Chemical Shifts (ppm) 

Equilibrium Geometry model: ωB97X-D/6-31G*  Est. ωB97X-D/6-31G*  

signal 1H 13C 1H 13C 

RMS (ppm) 0.05 0.73 0.09 1.02 

Max error (ppm) 0.62 5.79 2.10 10.48 

 
Table 1 – Neural Network chemical shifts compared with those from corrected ωB97X-D/6-31G* (GIAO-based) 

density functional calculations for a series of 601 rigid marine natural product molecules.   

 

Results are quite close to the underlying QM shifts, at essentially a few seconds per 

molecule. In the case of the original multi-step protocol (with no machine learning 

steps), calculations complete in multiple hours to days. Spartan’24’s default Density 

Functional protocol (with one machine learning step) performs on a time scale of 

hours. The default Est. Density Functional protocol (with five different machine 

learning models) performs on a time scale of minutes. A representative sampling of 

flexible natural products molecules (with a mean of ≈280k conformers) from the 

Natural Products Database41 (a collection included with Spartan’24) indicate the est. 

density functional protocol (maximum use of machine learning models) is on the 

order of 30 times faster than the density functional protocol (with a single machine 

learning model step) when performing the same Boltzmann weighted NMR 

spectrum (1H and 13C shifts).  
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Table 2, below, provides an example of performance along with breakdown of 

molecular weight, conformers identified, and computational times (in minutes) for 

both the Est. Density functional protocol (machine-learning) and the Density 

functional protocol (quantum-chemical). Assessment compares times for a set of 

eighteen natural products molecules. The machine learning protocol performance is 

impressive. 

 

Table 2. Flexible Natural Products Examples. Boltzmann Weighted NMR Spectrum task  

Machine Learning (NN) vs. Density Functional (QM) computational times.   

molecule  conformers Formula Wt. (amu) NN* QM* factor of 

coodeanone A  78,732 C₂₃H₃₂O₅ 388.5 13.6 459.8 33.8 

bromophycolide R 1,417,176 C₂₇H₃₅BrO₄ 503.5 3.3 164.8 49.9 

psiguadial C 11,664 C₂₀H₂₄O₁₀ 490.6 3.0 97.1 32.4 

lythrine 2 C₂₆H₂₉NO₅ 435.5 2.2 82.7 37.6 

angustilongine A 68,024,448 C₄₃H₅₄N₄O₅ 706.9 35.2 1277.8 36.3 

ternifolide A 209,952 C₂₂H₂₈O₇ 404.5 4.2 78.7 18.7 

tonantzitlolone A 6,377,292 C₂₆H₄₀O₇ 464.6 17.1 308.7 18.1 

prunifoline D 576 C₂₁H₂₄N₂O₄ 368.4 8.5 212.9 25.0 

kopsonoline 4 C₁₉H₂₂N₂O 294.4 1.2 37.2 31.0 

ciliatonoid A 128 C₂₆H₃₂O₅ 424.5 7.3 161.3 22.1 

epoxyresibufogenin… 1,728 C₂₅H₃₂O₆ 428.5 3.8 102.8 27.1 

achillinin B 13,122 C₃₁H₃₈O₈ 538.6 20.7 652 31.5 

lycopodine 3,888 C₁₆H₂₅NO 247.4 1.2 25.1 20.9 

caesalappanin G 39,366 C₂₂H₃₀O₇ 406.5 6.4 124.6 19.5 

stauntonine 17,496 C₂₁H₂₈O₇ 392.5 14.9 310.5 20.8 

flueggine B 12 C₂₄H₂₈N₂O₅ 424.5 2.4 82.6 34.4 

shearinine I 2,592 C₃₇H₄₅NO₇ 615.8 8.2 371.9 45.4 

saroclide A 708,588 C₂₅H₃₂N₂O₅ 440.5 13.5 969.5 71.8 

mean 4,272,598  443.1 9.3 306.7 30.2 

 

 
*Time in minutes. Calculations performed on a one of three different Intel systems: 12-core Intel 

i7 (Win 11), 10-core Intel i9 (Ubuntu 22.04 LTS), 24-core Intel i9 (Win 11). At the low end, 

improvement from the Neural Network protocol offers more than an order of magnitude faster 

results than the Quantum Chemical protocol. This dataset is available from neural network folder 

in the Tutorials directory “NMR-Spectrum-Timing.spartan.” Average RMS against experimental 
13C Shifts is 1.27 ppm for the density functional calculations and 1.55 ppm for the neural network 

models. 
 

 



 

From the user’s perspective, the only change in the details of the Calculations dialog 

is changing the selection from Density Functional to Est. Density Functional for 

the “with” menu in the NMR Spectrum task. Spartan configures all details, which 

are exposed if one clicks on the Details checkbox: 
 

 

 
 

For comparison, the details of the Density Functional protocol for the NMR 

Spectrum are provided below: 
 

 

 

Both approaches begin with the same 2 steps: MMFF94 is used to establish an initial 

conformer distribution and MMFF energies are improved by the Corrected MMFF 

model trained to ωB97X-V/6-311+G(2df,2p)[6-311G*]. The procedures fork 

beyond this point. The Density Functional protocol goes on to perform as many as 

300+ additional quantum chemical calculations, some potentially quite time 

consuming. Final chemical shift data is obtained from density functional GIAO-

based ωB97X-D/6-31G* calculations, including empirically corrected chemical 

shifts. Whereas in the Est. Density Functional protocol with only a single quantum 

chemical calculation (with a modest basis set), machine learning models provide the 

energies for Boltzmann weighting as well as 13C and 1H chemical shifts (one neural 

network per center). The combination of comparable accuracy to the QM-heavy 

protocol and the remarkably fast performance suggests the new ML protocol is 

positioned to play a substantive role in assisting practicing chemists with structure 

assignment of novel organic molecules. 
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