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THEORETICAL MODELS 

A variety of different procedures based on quantum mechanics (so- called 
quantum chemical models) have been developed to calculate molecular 
structure and properties as well as infrared, NMR and UV/visible spectra. 
All follow from a deceptively simple looking Schrödinger equation first 
written down in 1927. 

Ĥ  = 
Ĥ (the Hamiltonian or more precisely Hamiltonian operator) is the only 
known. It describes the kinetic energies of the particles that make up a 
molecule and the Coulombic interactions between the individual particles. 
Positively-charged nuclei repel other nuclei, and negatively-charged 
electrons repel other electrons, but nuclei 
attract electrons.  (the wave function) is a function of the Cartesian 
coordinates, and  (the energy) is a number. The goal in solving the 
Schrödinger equation is to find a function that when operated on by 
the Hamiltonian yields the same function multiplied by a number. Note that 
there are many (actually an infinite number of) solutions to the Schrödinger 
equation. These correspond to the ground and numerous excited states of 
an atomic or molecular system. 

The energy of a molecule can be measured. On the other hand, the wave function 
has no physical meaning, and is not subject to experimental measurement, 
although the square of the wave function times a small volume element gives 
the probability of finding an electron inside that volume. This exactly 
corresponds to what is actually measured in an X-ray diffraction 
experiment. 

The Schrödinger equation has been solved exactly for the hydrogen atom (a 
one-electron system), where the wave functions are familiar to chemists as the 
s, p, d, ... atomic orbitals. The lowest-energy s orbital corresponds to the 
ground state of the hydrogen atom, whereas the higher-energy solutions 
correspond to excited states. 
 

         s orbital p orbital d orbital 
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The Schrödinger equation may easily be written down for many- electron 
atoms as well as for molecules, although it cannot be solved. Even something 
as seemingly simple as the helium atom with only two-electrons presents an 
insurmountable problem. Approximations must be made. 
 
Hartree-Fock Molecular Orbital Models 

Hartree-Fock molecular orbital models or molecular orbital models, as 
they are commonly referred to, were the first practical quantum chemical 
models to be formulated. They result from making three approximations to 
the Schrödinger equation: 

1. Separate nuclear and electron motions. The Born-Oppenheimer 
approximation says that “from the point of view of the electrons”, the nuclei 
are stationary. This eliminates nuclear motion and leads to an electronic 
Schrödinger equation which can be solved for the H + molecule, but cannot 
be solved for molecules with more than one-electron. The Born-
Oppenheimer approximation is of little consequence for the description of 
molecular properties, for example, equilibrium geometries and reaction 
energies, and may be used without concern. 

2. Separate electron motions. The Hartree-Fock approximation eliminates 
the need of having to simultaneously account for the motions of several 
electrons. It leads to a much simpler set of equations in which the motion of 
each electron in an environment made up of the nuclei and all the other 
electrons is sought. 

3. Represent each one-electron solution or molecular orbital by a linear 
combination of atom-centered functions or atomic orbitals. The LCAO 
(Linear Combinations of Atomic Orbitals) approximation reduces the 
problem of finding the best functional form for the molecular orbitals to the 
much simpler problem of finding the best set of linear coefficients. As the 
number and complexity of the atomic orbitals increases, the energy and 
other properties approach limiting values. However, computational cost 
also increases. The goal is to provide as few functions as possible to yield a 
value for the property of interest that adequately 
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reflects its limit. Note, that the limiting values of properties are not expected 
to be the same as experimental values, but rather reflect the behavior of the 
Hartree-Fock model. 
 
Basis Sets 

Gaussian functions are polynomials in the Cartesian coordinates times an 
exponential in the square of the distance from the origin. They are distinct 
although very closely related to the exact solutions of the hydrogen atom 
(exponential functions in the distance), and are labeled 1s, 2s, 2p, ... , the 
same nomenclature used to describe hydrogen atom solutions. 

A minimal basis set includes only sufficient functions to hold all the 
electrons on an atom and to maintain its spherical shape. This involves a 
single 1s orbital for each hydrogen atom, and a set of five orbitals (1s, 2s, 
2px, 2py and 2pz) for each carbon atom. Because a minimal basis set 
incorporates only one set valence p functions, the components of which are 
the same size, atoms in nearly spherical environments will be better 
described than atoms in aspherical environments. A split-valence basis set 
addresses this problem by providing two different sets of valence p 
functions, one compact set and one loose set. This allows different linear 
combinations for different directions. For example, the compact p orbital 
can be emphasized to construct a  bond while the loose p orbital can be 
emphasized to construct a  bond. 
 

ps = inner  + outer   

 
 

pp = inner + outer  
 
 

Because the functions in a minimal or split valence basis set are centered 
on the atoms, they may have difficulty describing electron distributions that 
fall in between atoms (that is, bonds). Polarization basis sets address this 
problem by providing a set of d-type functions (polarization functions) on 
main-group elements, and (optionally) a 
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set of p-type functions on hydrogen. The resulting combinations can be 
thought of as hybrid orbitals, for example, the pd and sp hybrids shown 
below. 

 
+   

 

 

 +     

The so-called 6-31G* basis set will be used for the infrared and NMR 
calculations described in future topics. The number “6” to the left of the “-” 
in the name indicates that 6 functions are used to describe each inner-shell 
(core) atomic orbital. The numbers, “31” to the right of the “-” indicate that 
groups of 3 and 1 functions are used to describe each valence-shell atomic 
orbital. “*” designates that polarization functions are supplied for non-
hydrogen atoms. Were two stars to be present (as in 6-31G**) this would 
indicate that p-type polarization functions would also be placed on 
hydrogen atoms. 

The valence basis functions can be further split and additional polarization 
functions can be added including f-type functions. A commonly used basis 
set is designated 6-311+G(2df,2p). “311” indicates a triply-split valence, 
“2df” indicates that two sets of d-type functions and a set of f-type functions 
are added to the valence of heavy atoms, and “2p” indicates that two sets of 
p-type functions are added to the valence of hydrogen atoms. 

Taken together, these three approximations lead to a set of equations known 
as the Roothaan-Hall equations. They increase in computational cost as 
the cube of the size (number of basis functions), and can easily be applied 
to molecules incorporating up to 100 heavy (non- hydrogen) atoms. 
 
Beyond Hartree-Fock Models 

Of the three approximations we have made to reach Hartree-Fock models, 
the second is to be taken most seriously. According to the Hartree-Fock  
approximation,  electrons  “move  independently”, 
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which means that both the electron-electron repulsion energy and the total 
energy will be too large. The limiting Hartree-Fock energy is, therefore, 
necessarily higher (less negative) than the experimental energy. Electron 
correlation is the term give to describe the coupling or correlation of 
electron motions. The correlation energy is defined as the difference 
between the Hartree-Fock energy and the experimental energy and is 
necessarily a negative quantity. 

There are two conceptually different approaches for calculating the 
correlation energy, and numerous specific models arising from each of these 
approaches. Wave function based models start from the Hartree- Fock wave 
function combining it with wave functions resulting from electron excitations 
from filled to empty molecular orbitals. Density functional models 
supplement the Hartree-Fock Hamiltonian. 
 
Configuration Interaction Models 

Configuration interaction models are archetypal of wave function based 
correlated models. In the unachievable limit, so-called full configuration 
interaction, all possible single and multiple electron promotions from 
occupied to unoccupied Hartree-Fock molecular orbitals and assuming a 
complete basis set, the energy is same as would be achieved by solution of 
the electronic Schrödinger equation. More practical limited configuration 
interaction schemes have been formulated by limiting the number of 
electron simultaneously promoted (1-electron, 2-electron, ...) and the 
number of filled and unfilled molecular orbitals involved in the promotions. 
 
Møller Plesset Models 

An alternative and more commonly used wave function based model is 
Møller-Plesset theory. This assumes that the Hartree-Fock energy E0 and 
wave function Ψ0 are solutions to an equation involving a Hamiltonian, 
Ĥ0, that is very close to the exact Schrödinger Hamiltonian, Ĥ. This being 
the case, Ĥ can be written as a sum of Ĥ0 and a small correction, V. λ is a 
dimensionless parameter. 

Ĥ = Ĥ 0 + Vˆ 
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Expanding the exact energy in terms of a power series of the Hartree- 
Fock energy yields: 

E = E(0) + E(1) + 2E(2) + 3E(3) + ... 

Substituting this expansion into the Schrödinger equation and collecting 
terms in powers of  leads to an explicit expression for the energy correction. 
The sum of E(0) and E(1) is the Hartree-Fock energy. Including the next term 
gives rise to the so-called MP2 (second-order Møller-Plesset) model. 

Both the simplest configuration interaction (limited to single and double 
electron excitations only) and the MP2 models increase in computational 
cost as the power of the total number of basis 5th functions. In practice, this 
limits them to molecules incorporating 25-50 heavy (non-hydrogen) atoms 
at most. 

Density functional theory or simply DFT, is based on two theorems 
elaborated by Hohenberg and Kohn, which taken together, prove that the 
energy and other properties of a many-electron system in its ground state 
may be correctly and uniquely described in terms of a function of the 
electron density. The term “functional” or a function of a function arises 
because the electron density is itself a function of the three spatial coordinates. 
What the two Hohenberg-Kohn theorems imply is that the Schrödinger 
equation can actually be solved; that is, the completely “intractable” problem 
involving the coupled motions of n electrons in a static field due to the nuclei 
(a “molecule”) may be replaced by an eminently “solvable” problem that 
treats the electrons as independent (that is, non-interacting) particles. 
Because the electron density is a function of only three coordinates, in effect 
a 3 dimensional problem is substituted for a 3n dimensional problem. 
Unfortunately, the Hohenberg-Kohn theorems do not tell us anything about 
the functional itself. 

In the density functional formalism, the electronic energy, Eel, is written as 
a sum of the kinetic energy, ET, the electron-nuclear interaction energy, EV, 
the Coulomb energy, EJ, and a term combining the exchange and correlation 
energies, EXC. 

Eel = ET + EV + EJ + EXC 
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What is “the” exchange/correlation functional? The quest has gone on for 
several decades and hundreds of functionals have actually been proposed and 
divided into several distinct classes. 
 
Local Density Approximation (LDA) 

The functional first proposed stems from a purely hypothetical problem in 
which a uniform gas of non-interacting electrons moves in a positively 
charged field. An analytical solution for the exchange energy is available and 
takes the form of the density raised to the 4/3’s power. The correlation energy 
may be arrived at through numerical simulation, and is also only dependent on 
only the local density at each point. 

EXC = E(ρ) 

Functionals that depend only on the electron density (ρ) are referred to as 
LDA functionals. They are not very successful in describing the properties of 
molecules and have largely been replaced. 
 
Generalized Gradient Approximation (GGA) 

GGA functionals depend on the gradient of the electron density, ρ, 
in addition to the density itself. 

EXC = E (ρ, ∇ρ) 

They have been around since the mid 1980’s and were the first to provide 
a reasonable account of molecular properties and in particular the energies 
of chemical reactions. In this sense, they were instrumental in drawing 
attention to density functional theory as a viable “low-cost” alternative to 
wave function based correlation techniques, something that LDA 
functionals had failed to do. The BLYP functional is representative. 
 
Global Hybrid Generalized Gradient Approximation (GH-GGA) 

GH-GGA functionals often referred to as hybrid functionals) replace a fixed 
fraction of the exchange by the “exact” Hartree-Fock exchange, the fraction 
being an adjustable parameter. It is likely that it was the introduction of 
hybrid functionals that caused the community 
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to recognize that density functional theory was “semi-empirical” in nature. 
Adding the Hartree-Fock exchange is “costly”, but led to significant 
improvements in the description of reaction energies. While GH-GGA 
functionals were introduced in the early 1990’s, they remain a mainstay in the 
application of density functional theory to chemistry. The B3LYP 
functional, in particular, is perhaps still more widely used than any other 
functional, even though there are now much better choices. 
 
Range Separated Hybrid Generalized Gradient Approximation (RSH-
GGA) 

The idea behind range separated GGA hybrid functionals is that the 
“optimum” amount of Hartree-Fock exchange varies with electron- electron 
distance, from a small percentage in the long range limit to a large 
percentage in the short range limit, in the extreme from 0% to100%. Both 
ωB97X-D and ωB97X-V functionals are range- separated GGA hybrids. 
Both incorporate so-called local corrections to account for dispersive 
interactions (see discussion following). 
 
meta Generalized Gradient Approximation (mGGA) 

A meta GGA functional not only depends on the electron density and its 
gradient (as does a GGA functional) but also on the Laplacian of the electron 
density. As such, it can be construed as the next logical step beyond GGA 
in constructing a Taylor series expansion of the electron density. 

E = E (ρ, ∇ρ,∇2ρ) 

More commonly, meta GGA functionals are viewed as adding the 
so-called kinetic energy density to GGA. 

E = E (ρ, ∇ρ,∇2ψ) 

In either case, the addition can be construed as second-order term in a 
Taylor series expansion of the electron density. The B97M-V functional is 
an example of a “pure” meta functional. 
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Global Hybrid meta Generalized Gradient Approximation (GH-
mGGA) 

These are strictly akin to global hybrid GGA (GH-GGA) functionals in that 
a fixed percentage of the Hartree-Fock exchange is introduced. The “only” 
difference is that a meta GGA functional including a second-order term 
replaces a GGA functional. The M06-2X functional, widely accepted as an 
excellent choice for thermochemical comparisons, is an example of a GH-
meta GGA functional. 
 
Range Separated Hybrid meta Generalized Gradient Approximation 
(RSH-mGGA) 

A range-separated meta GGA (RSH-mGGA) functional is identical to a 
range-separated GGA (RSH-GGA) functional except that a meta GGA 
functional has replaced the underlying GGA functional. M11 and ωB97M-V 
are examples of range-separated meta GGA functionals. 
 
Double Hybrid meta Generalized Gradient Approximation (DH-RSH-
mGGA) 

A double hybrid meta GGA (DH-RSH-mGGA) functional accounts for 
contributions of unoccupied molecular orbitals as well as occupied orbitals, by 
way of a MP2 like approach. The B97M(2) functional is now supported for 
energy calculations only. 
 
Non Local Corrections 

The previous functional classes are all considered “local” in that they are 
described in terms of a single integral over the three spatial coordinates. In 
order to capture dispersive van der Waals interactions, so-called non local 
correlation functionals are needed. These involve a double integral over two 
sets of coordinates, these may add significant cost to the calculations. For 
example, the range-separated GGA hybrid ωB97X-V functional used 
throughout this text, incorporates theVV10 non-local correlation functional 
and is 3-5 times more costly than the parent ωB97X functional. An 
alternative and less costly way to account for dispersive interactions is to 
add an empirical correction to the functional. So-called Grimme 
corrections are designated by 
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appending “-D” as in ωB97X-D, or “D3” as in B3LYP-D3, to the 
end of the functional. 

A graphical summary of a number of commonly-used functionals 
stemming from different classes is provided in the figure below. 
 

Which classes of functionals are “best” and which functionals within each 
class are “best”? A broad base of experience allows some general remarks to 
be made. 
 
Numerical Integration 

Unlike both Hartree-Fock and wave function based correlated models, density 
functional models cannot be evaluated wholly analytically. Some 
components require numerical integration, which introduces another 
variable into the mix, specifically the form and size of the integration grid. 
An oversimplified description places the grid points along a set number of 
angular directions and at a set number of distances from the origin. This is 
referred to as a Lebedev grid. 
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“Cost” of Density Functional Models 

The computation “cost” of density functional models depends on the class, 
the number of basis functions, η, and the number of points in the numerical 
integration grid, κ, where κ >> η. GGA and pure meta-GGA functionals such 
as B97M-V that do not require the Hartree-Fock exchange formally scale 
as O(η2κ). The other functionals combine this dependence with the cost of 
the Hartree-Fock exchange, which formally scales as O(η4) but in practice 
is O(η3) or lower. Finally, functionals such as ωB97X-V that directly account 
for dispersion have a step that scales as O(η2κ2). This typically dominates the 
calculation. Times (in minutes) for calculation of the energy together with 
its gradient (“one step” in the optimization of molecular geometry) for 
morphine (C17H19NO3) with the B3LYP (GH-GGA), ωB97X-D (RSH-
GGA), ωB97X-V (RSH-GGA + dispersion), B97M-V (mGGA), M06-2X 
(GH-mGGA) and M11 and ωB97M-V (RSH-mGGA) 
functionals, as well as with RI-MP2, which formally scales as O(η5), with the 
6-31G* basis set are provided in Table A-1. These have been obtained using 
a single core of a 3.3 GHz Intel i7 5820K processor. Table A-2provides 
times for 6-311+G(2df,2p) calculation, a dual basis set 6-311+G(2df,2p) 
calculation and a dual basis set cc-pVQZ-g (cc-pVQZ minus the set of g 
functions) energy calculation, relative to the corresponding 6-31G* 
energy/gradient calculations. For example, the value of 26 for the dual basis 
set cc-pVQZ–g ωB97X-D energy calculation given in Table A-2, means 
that this calculation is 26 times more costly than the ωB97X-D 
energy/gradient calculation. Put another way, a structure optimization 
requiring 26 cycles would cost the same as an energy obtained using the 
larger basis set. 

The manner of reporting is deliberate. The 6-31G* basis set is usually deemed 
satisfactory for calculation of equilibrium geometry, whereas larger basis sets 
(for example, 6-311+G(2df,2p) and cc-pVQZ-g) are known to be required for 
accurate descriptions of the energies of most chemical reactions. 
Determination of geometry for molecules of the complexity of morphine 
typically requires upwards of 10-20 energy/ gradient cycles, that is, an order 
of magnitude or more greater than the time reported in the first column of 
the table. Both parts must be considered in order to correctly access cost and 
practicality. 
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Table A-1: Times for energy and gradient calculations on morphine with 
  B3LYP, ωB97X-D, ωB97X-V, B97M-V, M06-2X, M11 and 

    ωB97M-V density functional models and RI-MP2 model with the  
    6-31G* basis set (need ωB97M-V times) 

6-31G* + gradient 
 

B3LYP 7 
ωB97X-D 15 
ωB97X-V 41 
B97M-V 50 
M06-2X 19 
M11 22 
RI-MP2 10 

 
 Table A-2: Times for B3LYP, ωB97X-D, ωB97X-V, B97M-V, M06-2X, M11 and 

ωB97M-V density functional and RI-MP2 energy calculations with 6-
311+G(2df,2p), dual 6-311+G(2df,2p) and dual cc-pVQZ-g basis sets 
relative to the corresponding times for energy and gradient 
calculations with the 6-31G* basis set give in Table A-1. 

 

 
6-311G(2df,2p) 

-311+G(2df,2p) [6-
311G*] 

cc-pVQZ-g 
[rcc-pVQZ] 

B3LYP 26 5 48 
ωB97X-D 14 3 26 
ωB97X-V 6 2 10 
B97M-V 5 2 6 
M06-2X 13 3 21 
M11 11 3 20 
RI-MP2 18 3 33 

Several conclusions may be drawn: 

1. Times for calculation of the energy together with its gradient vary by close 
to an order of magnitude among the seven models. The B3LYP model is the 
least costly and the ωB97X-V, B97M-V and ωB97M-V models most costly. 
The latter result suggests that calculation of the gradient of dispersion 
functional common to both models is to blame. In terms of cost, the 
ωB97X-D model is closest to B3LYP. The surprising result is perhaps the 
good performance of the RI-MP2 model, surpassed only by B3LYP. 
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2. 6-311+G(2df,2p) energy calculations are roughly an order of magnitude 
more costly than the corresponding energy/gradient calculations. At the 
high end and low ends is the factor of 26 for the B3LYP model and a factor 
of 5 for the B97M-V model. Structure optimization typically requires 
upwards of 20 steps (energy/gradient), and will likely dominate the overall 
task. 

3. The dual basis set approximation applied to 6-311+G(2df,2p) basis set leads to 
significant cost savings. If this is the chosen energy method, the costly step 
will most certainly be determination of geometry. 

4. Except for the ωB97X-V and B97M-V functionals, dual basis set cc-pVQZ-
g calculations are roughly an order of magnitude more costly than the 
corresponding 6-311+G(2df,2p) calculations. This means that geometry and 
energy steps are likely to contribute equally to overall cost. The much 
smaller increase in cost for B97M-V is presumably due to its lack of the 
Hartree-Fock exchange. 

5. The RI-MP2 model is clearly competitive, greater in overall cost only to the 
B3LYP models. Because of its inherent O(η5) scaling, RI-MP2 will 
eventually fall significantly behind density functional models in performance 
as molecular size is increased. 
 

Disadvantages of Density Functional Models 

Low computation cost relative to wave function based electron correlation 
models is the principal attraction of density functional models. Aside from 
the RI-MP2 model, density functional models are the only procedures that 
are both reliable and routinely applicable to molecules of moderate size. 
However, density functional models come with some disadvantages not 
shared by wave function based procedures. By far the most serious of these 
is that they do not offer a clear pathway to improvement. Whereas wave 
function based procedures return a higher and higher percentage of the 
correlation energy with increasing degree of complexity, for example, in 
successively adding orders in the Møller-Plesset models, 
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there is no guarantee that increasing the flexibility (and complexity) of a 
particular functional will actually lead to improvement. It is clear that present 
generation functionals are “better” than those of previous generations, for 
example, ωB97X-D and M06-2X are significantly better than B3LYP, in 
particular for calculation of reaction energies. What is less clear is whether 
the improvement is to large extent due to careful parameterization to high 
quality reference data (and to an increased number of parameters) rather 
than from insight into the “proper” functional form. Functional selection, 
even while guided by clear physical models, certainly has an uncertain 
component, and at least at present it is not possible to say from first 
principles which of several functionals is likely to provide the “best” results. 
This can only be done by way of thorough comparisons with “known” data. 

In practice, density functional models increase in computational cost as the 
cube of the total number of basis functions (the same dependence seen for 
Hartree-Fock models). Because most functionals require calculation of the 
Hartree-Fock exchange energy, they are necessarily more costly than Hartree-
Fock models, but can easily be applied to molecules incorporating up to 
100 heavy (non-hydrogen) atoms. 
 
Models for Open-Shell Molecules 

Thus far, discussion has been limited to molecules with closed- shell 
electron configurations, that is, with all electrons being paired. This covers 
the vast majority of organic molecules as well as most organometallic 
molecules. There are two ways to think about molecules with unpaired 
electrons. The obvious way is to insist that electrons are either paired or are 
unpaired. 
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This is referred to as restricted and the individual models as restricted 
models, for example, the restricted Hartree-Fock (or RHF) model. 

The restricted procedure does not necessarily yield the lowest possible energy, 
simply because it forces the “paired” electron into the same spatial orbitals. 
Removing this constrains provides greater flexibility and generally lead to a 
lower energy. This is termed unrestricted and the resulting models are termed 
unrestricted models, for example, the unrestricted Hartree-Fock (or UHF) 
model. 
 

Aside from yielding lower energy, unrestricted models are generally less 
costly than restricted models, and are much more widely used and is the 
default procedure in Spartan. 
 
Semi-Empirical Molecular Orbital Models 

The principal disadvantage of Hartree-Fock, density functional and MP2 
models is their computational cost. It is possible to introduce further 
approximations together with empirical parameters in order to significantly 
reduce cost while still retaining the underlying quantum mechanical 
formalism. So-called semi-empirical molecular orbital models follow in a 
straightforward way from Hartree-Fock models: 

1. Insist that basis functions on different atoms do not overlap (“see each 
other”). The so-called NDDO approximation is rather drastic but reduces 
the computation effort by more than an order of magnitude over Hartree-
Fock models. 

2. Restrict to a minimal valence basis set of atomic functions. This means that 
there are no inner-shell (core) functions in the basis set. As a consequence, 
the cost of doing a calculation involving a second-row element such as 
silicon, is no more than that incurred for the corresponding first-row element 
such as carbon. 
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3. Introduce adjustable parameters to reproduce specific experimental data. This 
is what distinguishes the various semi-empirical models currently available. 
Choice of parameters, more than anything else, appears to be the key to 
formulating successful semi-empirical models. 
 
Molecular Mechanics Models 

The alternative to quantum chemical models are molecular mechanics models. 
These do not start from the Schrödinger equation, but rather from a simple 
but chemically reasonable picture of molecular structure, a so-called force 
field. In this picture, just as with a Lewis structure, molecules are made up 
of atoms (as opposed to nuclei and electrons), some of which are connected 
(bonded). Both crowding (van der Waals) and charge-charge (Coulombic) 
interactions between atoms are then considered, and atom positions are 
adjusted to best match known structural data (bond lengths and angles). 

Molecular mechanics is much simpler than attempts at solving an 
“approximate” Schrödinger equation, but requires an explicit description of 
chemical bonding, as well as a large amount of information about the 
structures of molecules. This biases results and seriously limits the predictive 
value of molecular mechanics models. Nevertheless, molecular mechanics 
has found an important role in molecular modeling as a tool to establish 
equilibrium geometries of proteins and other large molecules. It has also 
been widely used to establish the preferred conformation of molecules with 
multiple degrees of conformational freedom and hundreds or even 
thousands of accessible conformers. With regard to the latter, comparisons 
with results of high-level quantum chemical calculations have, however, 
clearly shown that present-generation molecular mechanics models are 
often not satisfactory in identifying the “best” (lowest-energy) conformer 
and are not to be trusted for obtaining Boltzmann weighed averages. 
However, they have proven to be useful for identifying highly unfavorable 
conformers allowing some shortening of the initial list of possible structures. 
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Choosing a Theoretical Model 

No single method of calculation is likely to be ideal for all applications. A great 
deal of effort has been expended to define the limits of different molecular 
mechanics and quantum chemical models, and to judge the degree of 
success of different models. The latter follows from the ability of a model to 
consistently reproduce known (experimental) data. Molecular mechanics 
models are restricted to determination of geometries and conformations of 
stable molecules. Quantum chemical models also provide energy data, 
which may in turn be directly compared with experimental thermochemical 
data, as well as infrared, Raman, UV/visible and NMR spectra and 
properties such as dipole moments, which may be compared directly with the 
corresponding experimental quantities. Quantum chemical models may also 
be applied to transition states. While there are no experimental structures 
with which to compare (see the topic Potential Energy Surfaces), 
experimental kinetic data may be interpreted to provide information about 
activation energies (see the topic Total Energies and Thermodynamic and 
Kinetic Data). 

Success is not an absolute. Different properties, and certainly different 
problems may require different levels of confidence to be placed in the 
calculation to actually be of value. Neither is success sufficient. A model also 
needs to be practical for the task at hand. Were this not the case, there would 
be no reason to look further than the Schrödinger equation itself. Models 
that may be practical for small to medium size organic molecules cannot be 
expected to be applied to proteins. Models that are successful and practical 
for organic molecules may not necessarily meet either criterion for 
inorganic molecules or transition-metal organometallics. Not only does the 
nature and size of the system needs to be taken into account, with due 
attention to the available computational resources and the experience (and 
patience) of the practitioner. Specifics aside, practical models usually share 
one common feature in that they are not likely to be the best possible 
treatments which have been formulated. Compromise is almost always an 
essential component of model selection. Continued advances in both digital 
computers and computer software will continue to raise the bar, but it will 
be some time before fully reliable models will be 
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routinely applicable to all chemical systems of interest. 

The MMFF molecular mechanics model generally provides a satisfactory 
description of equilibrium geometry where, at least for organic molecules  
. It has also proven to be suitable for removing high-energy conformers for 
molecules with multiple degrees of freedom in preface to quantum chemical 
calculations of conformer energy differences. 

Semi-empirical model are appropriate for: 
i) Equilibrium geometry determinations for large molecules. 
ii) Transition-state geometry determinations. 
iii) Equilibrium and transition-state geometry determinations 

involving transition metals. 

Semi-empirical models are unsuitable for: 
i) Calculation of reaction energies. 
ii) Calculation of conformer energy differences. 

Small basis set Hartree-Fock models such as HF/3-21G and HF/6-
31G* are appropriate for: 

i) Equilibrium and transition-state structure determinations of 
organic molecules. 

ii) Calculation of energies of isodesmic reactions, including 
comparisons of regio and stereoisomers. 
They are unsuitable for: 

i) Calculation of reaction energies that involve bond making or breaking 
and calculation of absolute activation energies. 

ii) Comparison of isomer energies of molecules with different 
bond types. 

iii) Equilibrium and transition-state structure determinations for 
transition-metal organometallic molecules. 

iv) Calculation of conformer energy differences. 
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Small basis set density functional models such as B3LYP/6-31G* 
and B97X-D/6-31G* are appropriate for: 

i) Equilibrium and transition-state structure determinations for organic 
molecules as well as molecules incorporating transition metals. 

ii) Calculation of all types of reaction energies, although some caution is 
needed. 

iii) Calculation of conformer energy differences, although caution is 
needed. 

The RI-MP2/6-31G* model is appropriate for: 
i) Equilibrium and transition-state structure determinations except 

for molecules including transition metals. 
ii) Calculation of all types of reaction energies, although some caution is 

needed. 
It is unsuitable for: 

i) Equilibrium and transition-state structure determinations for 
transition-metal organometallic molecules. 

ii) Calculation of reaction and activation energies where transition- 
metals are involved. 

The B97X-V/6-311+G(2df,2p) model is appropriate for calculating all types 
of reaction energies. Implemented together with a dual basis set, it provides a 
practical and reliable means to establish conformer energy differences. 


